GATE question papers: Mining Engineering (MN)

Q	.1	- Q. 2	0 carry one	mark	each.						
1.	net.in	If A is a (A)	an orthogonal ma $A^{T} = A^{-1}$	atrix, the (B)	$A^{T} = -A^{-1}$	(C)	$A = A^{-1}$	(D)	$A = A^{-1}$		
2.	rs.r	In a normal (Gaussian) distribution curve, the area between one standard deviation from mean on									
	Dape	either s (A)	50 50	(B)	68	(C)	86	(D)	95		
3.	stion	A meas (A)	sure of dispersior mean	n of a sa (B)	mple data set is median	6 (C)	mode	(D)	standard deviat	tion	
4.	<i>N</i> .que	The va	lue of $\lim_{x \to 2} \left(\frac{2\sqrt{4}}{5} \right)$	$\left(\frac{-x^2}{2}\right)$ is							
	//MM/	(A)	$-\frac{2\sqrt{8}}{5}$	(B)	0	(c)	$\frac{2\sqrt{8}}{5}$	(D)	non-existent		
5.	tp:/	î,j an	d \hat{k} represent th	e unit ve	ectors in the po	sitive x, y	and z directions	s of a Ca	rtesian coordina	te	
	hti	system. Using the right-hand rule, $\hat{k} \times \hat{j}$ represents									
		(A)	0	(B)	1	(C)	$-\hat{i}$	(D)	î		
6.		The roo (A)	ck mass classifica Q-system	ation sys (B)	tem that consic RMR	lers "activ (C)	ve stress" factor i RQD	is (D)	GSI		
7.		In a tri (A)	axial compression $\sigma_3 > \sigma_2 = \sigma_1$	n test if (B)	σ_1 is axial stres $\sigma_1 > \sigma_2 = \sigma_3$	s and σ_2 (C)	and σ_3 are confir $\sigma_1 = \sigma_2 > \sigma_3$	ning stre (D)	sses, then $\sigma_3 = \sigma_2 > \sigma_1$		
8.		In a longwall mining subsidence phenomenon, the "angle of break" is the angle between (A) the vertical line at the panel edge and line connecting the panel edge and zero subsider								ce on	
		(B)	the vertical line	at the p	anel edge and	line conn	ecting the panel	edge an	d point of critica	I	
		(C)	the vertical line	at the p	anel edge and	line conn	ecting the panel	edge an	d the point of th	ie _	
		(D)	the horizontal li	ne and t	the line connect	ing the p	anel edge and ze	ero subs	idence on the su	Irface	
9.		Pocket	and Wing techni	que of p	illar extraction	is relevan	t to			S.n	
		(A) (C)	room and pillar Wongawilli met	method hod		(D)	bord and pillar shortwall methor	method od		aper	
10		A non-e	electric detonatin	ig relay o	does NOT conta	ain	fues bood			np	
		(A) (C)	metal sleeve			(D)	neoprene conne	ecting tu	lbe	stio	
11		An iron are ger	ore deposit has herated at a grad	a mean le of 729	grade of 63% % Fe which are	Fe. Durino rejected.	g the course of n The effective m	nining, 3 ean grac	80% fines by wei de of the deposit	in of the second	
		(A)	59.1	(B)	53.1	(C)	50.4	(D)	41.4	/WV	
12		Koepe (A)	system of windin tapper guide	ig does l	NOT include	(B)	limit switches			tp://w	
			salety HUUK			(U)	NIGKE			htt	

13.	A gas r (A)	mask does NOT i check valve	include		(B)	warning device	r				
	(C)	Tace piece asse	ennory		(D)		1				
14.in/	Resuing stoping method is adopted hen ore body is(A) flat and thick(B) very steep and thick(C) flat and thin(D) very steep and thin										
15. 😽	Moody	diagram represe	ents resis	stance coefficier	nt in term	ns of					
aper	(A) Reynolds number and asperity ratio (B) viscosity and aspect ra (C) surface tension and viscosity (D) Reynolds number and										
16. An area of 100 m ² is measured on a plan having R.F. of 1/800. If the R.F. we								re to be 1/2000, the			
stic	area in (A)	16 m ² would be	(B)	40	(C)	250	(D)	625			
neo 17	Acnor	the DCMC norm		veritu indev ie e		o of	()				
ID.WW	(A) (C)	As per the DGMS norms, the severity index is a measure of (A) fatality rate (C) number of reportable injuries (B) serious injury rate (D) accident proneness of mine									
18.	A balar	nced transportati	ion probl	em is character	zed by						
//:0	(A) (B)	total supply executed at total demand e	ceeds to	tal demand	S.D						
otti	(C)	total demand is	s equal t	o total supply	GU						
	(D)	total supply is o	either eq	jual to or more t	han tota	I demand					
19.	In the	context of project	ct manag	gement techniqu	ies, the	FRUE statement	is				
	(A) (B)	CPM is stochas CPM is determi	tic and P nistic an	d PERT is determined PERT is stoch	astic						
	(C)	Both CPM and	PERT are	e deterministic	ne						
	(D)	BUTH CPIVI ANU	PERI die	e slochastic	<u>V.</u> Q						
20.	For min	ning property ap	praisals,	typical reports	orepare a	are Bankable Fea	asibility r	report (BFR),			
	chrono	logical order for	the prep	paration of these	reports	is		port (DI R). The			
	(A) (C)	$CPR \rightarrow FR \rightarrow E$ $FR \rightarrow BFR \rightarrow C$	$SFR \rightarrow D$	PR PR	(B) (D)	$BFR \rightarrow CPR \rightarrow CPR \rightarrow CPR \rightarrow BFR \rightarrow FR \rightarrow FR \rightarrow FR \rightarrow FR \rightarrow FR \rightarrow FR \rightarrow $	DPR \rightarrow DPR \rightarrow	FR FR			
• •			•) pt						
Q. 2'	1 to Q	2. 60 carry t	wo ma	arks each.	mahara ia				II/		
21.	ine me	$n(n+1)^2$	or the n	n(n+1)(n+2)	mpers is	n ⁴ +1		n ³	et.i		
	(A)	4	(B)	8	(C)	n	(D)	4	.ne		
				[1 c					ers		
22.	The su	m of the eigenva	alues of t	the matrix $\begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$	is				ap		
	(A)	-3	(B)	-1	(C)	1	(D)	3	duo		
23.	The va	lue of $\nabla \cdot F$ of a	vector F	$= 4x^2\hat{i} + 3xy^2$	ĵ + xyz ³	${}^{3}\hat{k}$ at the point (1, 1, 2)	is	sti		
	(A)	24	(B)	26	(C)	30	(D)	32	ane		
24.	The fu	nction $f(x) = x^3$	(1 – x) is	s integrated betw	veen 0 a	nd 1 (both inclu	sive) usi	ng closed form	N.(
	method	d and also by Sir	npson's	$\frac{1}{3}$ rule. the diffe	erence in	the values obta	ined fro	m these metho	ods is		
	(A)	0	(B)		(C)	1	(D)	1	.//.		
	~ /		. /	480	X - 7	120	~ /	20	ittp		

25.	Water starts to flow into a su L/min where t refers to time L/min, the total volume of wa	mp initially containir elapsed in min. If th ater in the sump after	ng 250 e pump er 3 hou	kL of water. The bing rate of wate urs in KL is	e inflow r er out of	ate of water is 4t the sump is 250
	(A) 250.5 (B)	255.6	(C)	269.8	(D)	280.9
26. uet in	There are 50 lemon trees in a each additional tree planted i drops by 10 lemons in a year order to maximize the total n	a reclaimed mine are n this area, consider . The number of trea umber of lemons in	ea. Each ring all es that the yea	n tree produces trees, the outpu to be added to ar is	800 lemo It numbe the existi	ons per year. For r of fruits per tree ing reclaimed area in
er	(A) 10 (B)	15	(C)	16	(D)	26
27. dedu	The grain density and bulk d 2.7 gm/cc respectively. The	ensity of a dry coars void ratio of the san	e graine nple in j	ed sandstone ro percentage is	ck sampl	e are 3.0 gm/cc and
tio	(A) 8.4 (B)	10.0	(C)	11.1	(D)	30.5
28. and	The ratio of uniaxial compress The theoretical value of angle	sive strength to unia	axial ter	nsile strength of	a sandst ree is	tone specimen is 8:1.
·	(A) 51 (B)	41		32	(D)	1
29. MM//	A circular tunnel is made und respectively. The tangential s plane is $3P_0$. The value of K i	erground where far tress ($\sigma_{\theta\theta}$) at the bost $\sigma_{\theta\theta}$	field ve undary	ertical and horizon of the tunnel for	ontal stre or $\theta = 45$	esses are P_o and KP_o ° from the horizontal
tp:	(A) 0 (B)	1	(C)	2	(D)	3
30.	The bending moment diagram	n for the shaft show	n belov	v resembles whi	ch one o	f the following
	graphs:	5 KN	2.6			
		1				
		The state of the state of the		A L		
		-9-		\rightarrow		
		• 2 m • •	2 m			
	M (kN.m)			M (kN.m)		
	5 —			5		
(A)	0	La California	(B)	0		Contractory of the local sectory of the local secto
1.1	2	4			2	4
	-5 Length (m)			-5 -	ngth (m)	
						1
	M (kN.m)					1
	10 -			M (kN.m)		
				5-		1
(C)	5 -		(D)		Call State	
				0		
	0	4		0	2	4
	Length (m)	2201		L	.ength (m	1)
		Page 3	of 8			

Page 5 of 8

s

Time

(Graph I)

Р

S

Time

(Graph II)

45.	A 1100 115 a.	V, 3Φ p The pov	oower su ver facto	pply sys or of the	tem of a system i	i mine is	draws a	load of 185	5 kW. Th	ie amm	eter rea	ding sho	WS
	(A)	0.84		(B)	0.73		(C)	0.64		(D)	0.48		
et.in/	Two be t of coa 1200 tp	elt conve al. Coal i oh. The	eyors loa is discha time elaj	d a grou rged fro psed in l	ind bunk m the bo nours be	er, ea ottom fore tl	ch at a ra of the gro ne bottom	ite of 400 t bund bunke n conveyor	ph, whic er onto a starts to	ch is ini belt co opera	tially fille onveyor te below	ed with 1 at a rate its rated	0000 of
ers.n	сарасн (А)	6.5		(B)	8.5		(C)	12.5		(D)	25.0		
47. 0	The case flow table of manganese mine for a particular year is shown below:												
Da	Item					Amo	unt (Rs. i	n lakhs)					
UU	Rever	nue				900							
tic	Cost (other th	ian depr	eciation)		300							
G	Depre	hoforo t	av			500							
n	If the c	corporate	e tax is f	50% of t	he Profit	t befor	e tax the	operating	L cash inf	flow in	lakhs of	Rupees i	s
W.C	(A)	400		(B)	350		(C)	250		(D)	200	nupees i	5
48. MM//:dtth	In an a and SC from b (A) (B) (C) (D)	nrea with D_2 . Assur ottom up NO ₂ , SO ₂ , SO ₂ , NO ₂ ,	$\begin{array}{l} \text{hin a surf}\\ \text{ning no}\\ \text{pwards v}\\ \text{CO}_2,\\ \text{NO}_2,\\ \text{O}_3,\\ \text{CO}_2,\\ \text{CO}_2, \end{array}$	face min diffusior vill be in O ₃ CO ₂ NO ₂ SO ₂	e, under a, reactio the orde and and and and	r station on and er of SO ₂ O ₃ CO ₂ O ₃	bondition bonding	n the follow of the gase	ving gaso es, the c	es are t oncent	found: N ration of	O ₂ , CO ₂ , the gase	O ₃ es
49. 50.	In a mi shaft d the len sinking (A) Match	ine site, epth in 1 gth of th become 43 the follo characte	the cost m. In the ne incline es more wing: ristics	of shaft e same s e in m. <i>P</i> econom (B)	t sinking site, the Assuming ical is 48	in lak corres g L by	hs of Rup ponding o D ratio is (C) Coal r	ees is give cost of driv 3.0, the de 145 nining met	n as 2.64 ring an ir epth in n hod	4D + 3 ncline is n beyo (D)	4.8, whe s 0.96L, [,] nd which 155	re D is th where L i the shat	ne s ft
	Р.	12 m t	hick flat	seam				Mechani	zed long	wall			
	Q. D	/mth	ick seam	n at 65° i	inclinatio	n	12. 12.	Descend	ling shiel	ld gral cay	vina		
	ĸ. S.	7 m th	ick seam	eann ⊨at 25° i	inclinatio	n	4.	Jankowi	zeu intej ce	yi ai ca	ving		
	(A)	P - 4, 0	2 - 3, R	- 2, S - 1	1		(B)	P - 3, Q	- 4, R -	1, S - 2	2		E.
	(C)	P - 2, 0	2 - 3, R	- 4, S - 1	1		(D)	P - 3, Q	- 2, R -	1, S - 4	ļ		t.
		_											S.ne
Com	mon	Data	Quest	tions									per
Com	mon D)ata fo	or Que	stions	s 51 ar	nd 52	2:						<u>)a</u>
Workm the service counter 51.	en arrive vice cou r is also Probab (A)	e at a m nter is e distribut ility that 0.24	ine work exponent ted expo t there is	shop to ially dist nentially a queu (B)	receive ributed v with a r e (more 0.36	tools f with a mean than c	for mainte n average time of 6 one workr (C)	enance. The e time of 10 min. nan) at the 0.40	e inter-a) min. th e service	rrival t ne servi counte (D)	ime of w ice time a er is 0.60	orkmen a at the	V.questionp
52.	Averag (A)	e time s 9	pent by	a workn (B)	nan waiti 12	ing foi	this turn (C)	to be serv 15	red in mi	n is (D)	18		www//:d
													htt

Page 7 of 8

Common Data for Questions 53 and 54:

A tacheometer is set up at a station 'B'. The RL of the station B is 150 m and above the MSL. by holding a staff vertically at a station 'A', the following readings are taken.

Vortical	angle	Staff readings ($\frac{101000}{m}$	T Teauniys a						
260261	angle	Stall Teaulitys (Uppor	_						
20 30			5 26	_						
Thomu	ultiplying	factor and addit		_ tant of the ins [;]	trumont a	ro 100 and 1.0 m	rospoc	tivoly		
53	53 The horizontal distance between the stations A and B in m is									
55. J	(A)	364 6	(B)	366 3	(C)	409.4	(D)	457.6		
30	(//)	001.0	(0)	000.0	(0)	107.1	(0)	107.0		
54. duoig	If the h (A)	eight of the inst 337.6	rument i (B)	s 1.2 m, the R 334.5	L of the st (C)	ation 'A' above t 331.5	he MSL i (D)	is m is 330.3		
GS	_									
Common Data for Questions 55 and 56:										
A turbir	ne pump	of efficiency 70	% discha	arges water at	the rate o	of 2100 L/min at	a total h	ead of 100 m.		
55.	If the p	oump is run by a	motor o	f efficiency 90°	%, the inp	out power require	ed for the	e motor in kW is		
	(A)	22.49	(B)	34.31	\Box (C)	44.11	(D)	54.50		
F	If the v	valacity of water	in cuctio	n and delivery	ninos of t	ho numn aro 1 0	m/s and	d 2 5 m/s		
50.	rosport	ively the diamet	in Suctio	ction and delivery	pipes of t	in cm are	111/5 0110	J Z.3 11/8		
tt	(A)	15 73 and 13 3	5		(B)	7 86 and 6 67				
4	(C)	5.78 and 6.02	0		(D)	4.97 and 4.22				
	(-)									
					<u> </u>					
Linke	ed An	swer Ques	tions		tio					
					GS					
State	ment	for Linked A	nswe	r Question	s 57 an	d 58:				
A fan ru	unning a	t a speed of 280	rpm cire	culates 105 m ³	/s of air ir	n a mine.				
57.	If the p	ower input to th	e motor	for driving the	fan is rec	orded to be 75 k	W, with	the combined		
	efficien	cy of fan and mo	otor at 7	0%, the fan pr	essure in	Pa is	(=)			
	(A)	50	(B)	350	(C)	500	(D)	650		
58.	If the f	an pressure is to	be incre	eased by 200 P	a by chan	ging the fan spe	ed, the f	an speed in rpm will		
	Decome	740	(D)	E40	T	202	(D)	222		
	(A)	/00	(b)	549	(0)	372	(D)	332		
State	ment	for I inked A	nswe	r Question	s 59 an	d 60.		et		
Acurfo		blast design has				noth and 200 m	a diamaa	tor. The encoine and		
A Surface	ce mine	blast design has	9 noies	In a row, each	01 8 m le rado drilli	ngin and 200 mr	n dansity	ter. The spacing and		
2/3 t/r	ale o al n ³	iu 5 m respectiv	ely. The	length of subg		ng is i ni anu th				
2.43 l/1 50	ιι . Δεειιmi	ng no back brea	k the ou	itnut ner blast	in t is			ab		
J7.	(A)	4593	(R)	5905	(C)	6124	(D)	6299		
	(1)	1070		0,00	(0)	0121	(0)	6277		
60.	Conside	ering an explosiv	e densitv	y of 0.9 t/m ³ a	nd stemm	ing length of 2 n	n, the po	owder factor from the		
	blast in	t/kg is	-			0 0	·	0		
	(A)	4.12	(B)	4.00	(C)	3.86	(D)	3.01		
								0. \		
			F I	- (1)						
			⊨nd	of the q	uestio	on paper				
								Δ//		
								/:0		
								tt		

Page 8 of 8