GATE – Mining Engineering (Topic Wise Questions 2007-2017) Topic: Underground Mine Ventilation

Prepared by:

Vikram Seervi

IIT (BHU)

Vikramseervi007@gmail.com

GATE SYLLABUS:

Ventilation, Underground Hazards and Surface Environment:

Underground atmosphere; Heat load sources and thermal environment, air cooling; Mechanics of air flow, distribution, natural and mechanical ventilation; Mine fans and their usage; Auxiliary ventilation; Ventilation planning.

Subsurface hazards from fires, explosions, gases, dust and inundation; Rescue apparatus and practices; Safety in mines, accident analysis, noise, mine lighting, occupational health and risk.

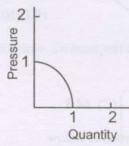
Air, water and soil pollution: causes, dispersion, quality standards, reclamation and control.

Q.50	Identify the INCORRECT statement			
	(B) Evasee effic (C) Evasee prod	eant to minimise exit s iency is primarily a fun- luces an inevitable incr allation leads to reduct	nction of divergence rease in friction losses	S
Q.55	At a fan drift pre stops, 10 m ³ /s of	ssure of 450 Pa, 50 m ³ / air still flows in the sa	/s of air flows through me direction. The min	n a mine. When the fan ne resistance in Ns ² /m ⁸ is
	(A) 0.1731	(B) 0.1800	(C) 0.1875	(D) 0.2372
		Common D	ata Questions	
50 m 1.1 kg factor	away from the inle /m ³ . The friction is 1.2. Answer the	et such that the mean a pressure loss per m ler e following in terms o	ir velocity in the duc ngth of the duct is 3.0 f guage pressure valu	ngth 200 m a fan operates et is 8.0 m/s at a density of 0 Pa and the entry shock nes in Pa.
Q.71	The total pressu	are at the outlet of the	duct is	
	(A) -35.2	(B) 35.2	(C) 192.2	(D) 635.2
Q.72	The total pressu	are at the inlet side of	the fan is	
	(A) -192.2	(B) -150.0	(C) 150.0	(D) 192.2
Q.73	The total pressu	are generated by the fa	in is	
	(A) 600.0	(B) 635.2	(C) 677.4	(D) 682.2
20	00			

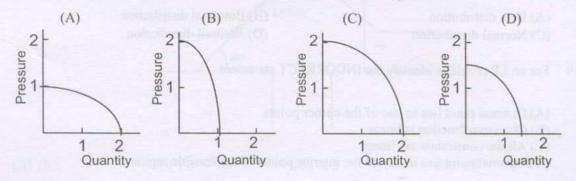
2	0	0	8

Q.4	A phreatic surface experiences a pressure		
	(A) Less than atmospheric pressure(C) More than barometric pressure	(B) Equal to atmospheric pressure(D) Less than barometric pressure	

Q.12 Effective temperature is estimated from


(A) Wet-bulb temperature, relative humidity, and air velocity

(B) Dry-bulb temperature, relative humidity, and air velocity


(C) Dry-bulb temperature, wet-bulb temperature, and air velocity

(D) Dry-bulb temperature, wet-bulb temperature, and relative humidity

Q.13 Pressure-quantity characteristic of a mine fan is given below:

The combined characteristic of two such identical fans installed in parallel is

Q.45 For a person working in an atmosphere containing 21% O₂, the exhaled air contains 4.5% CO₂ and 16% O₂. The respiratory quotient of breathing is

(A) 0.21 (B) 0.9 (C) 0.28 (D) 1.11

Q.43 Match the following:

Component of flame safety lamp

- P Asbestos rings
- Q Wire gauges
- R Outer glass
- S Combustion chimney

(A) P-2, Q-1, R-3, S-4

(C) P-2, Q-4, R-3, S-1

Purpose of component

- Dissipation of heat of flue gas
- 2 Formation of air-tight joints
- 3 Arrest of explosion inside the lamp
- 4 Separation of inlet air from flue gas

(B) P-4, Q-1, R-2, S-3 (D) P-1, Q-2, R-4, S-3 Q.64 A cage of floor area 5.0 m² suspended in a shaft has a drag coefficient 2.5. If the velocity of air in the shaft is 6.0 m/s, the drag force (N) experienced by the cage is

(A) 120 (B) 170 (C) 200 (D) 270

Statement for Linked Answer Questions 82 and 83: In a mine ventilation system, the resistances of two splits A and B are 0.5 Ns²m⁻⁸ and 2.0 Ns²m⁻⁸ respectively. Combined resistance of two shafts and trunk airways is 0.7 Ns²m⁻⁸. A quantity of 20 m³/s of air passes through split A.

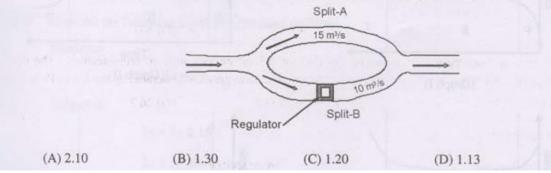
Q.82	The total air qua	antity passing the mine in	n m ³ /s is	
	(A) 30	(B) 27	(C) 25	(D) 17
Q.83	3 The total air power of the ventilation system in kW is			
	(A) 82.9	(B) 48.9	(C) 24.9	(D) 27.9

2009

Q.17 As per the DGMS norms, the severity index is a measure of

(A) fatality rate

(B) serious injury rate


(D) accident proneness of mine

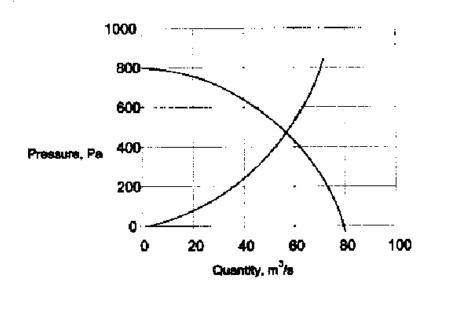
(C) number of reportable injuries

Q.32 Air flows at 2 m³/s through a forcing fan duct of 0.3 m² having uniform cross-section. The duct resistance is 40 Ns²m⁻⁸ and air density is 1.2 kg/m³. The total pressure generated by the fan in Pa is

(A) 186.7 (B) 160.0 (C) 133.3 (D) 26.7

Q.35 Two splits A and B are ventilated from an intake airway. Resistances of the splits are 0.5 Ns²m⁻⁸ and 0.8 Ns²m⁻⁸ respectively. A regulator is placed in split B to maintain a flow of 15 m³/s and 10 m³/s in splits A and B respectively, as shown in the figure. The size of the regulator in m² is

Q.49	depth in m. It	n the same site, the corre acline in m. Assuming L b	sponding cost of driving	in as 2.64D + 34.8, where D is the an incline is 0.96L, where L th in m beyond which the shaft s	is the
	(A) 43	(B) 48	(C) 145	(D) 155	
State	ment for Linked	Answer Questions 57 a	nd 58:		
A fan	running at a spe	ed of 280 rpm circulates 1	05 m ³ /s of air in a mine	The Date Oneslight	
Q.57	If the power is efficiency of fa	input to the motor for da an and motor at 70%, the f	riving the fan is recon an pressure in Pa is	ded to be 75 kW, with the con	mbined
	(A) 50	(B) 350	(C) 500	(D) 650	
Q.58	If the fan pres become	sure is to be increased by	200 Pa by changing the	ne fan speed, the fan speed in rp	om will
	(A) 768	(B) 549	(C) 392	(D) 332	


- Q.1 Ascensionally ventilated coal mine inclines ideally should have higher methane layering number when compared to descensionally ventilated inclines. The reason is
 - (A) in ascensionally ventilated incline density of air is higher
 - (B) ascenssionally ventilated incline creates conditions for improved turbulent mixing of methane layer
 - (C) methane drainage is not practiced in ascensionally ventilated incline
 - (D) descensionally ventilated incline creates conditions for improved turbulent mixing of methane layer
- Q.3 Determine the correctness or otherwise of the following Assertion [a] and the Reason [r]

Assertion : Both intake and return side stoppings must be closed simultaneously in the event of sealing off a coal mine panel with explosion hazard following a fire.

Reason : By continuously ventilating the area till simultaneous closure of the stoppings, the possibility of an explosion hazard due to gas build-up is avoided.

- (A) [a] is true but [r] is false
- (B) Both [a] and [r] are true and [r] is the correct reason for [a]
- (C) Both [a] and [r] are true and [r] is not the correct reason for [a]
- (D) Both [a] and [r] are false

- Q.5 An air quality parameter required to be monitored under the Indian National Ambient Air Quality Standards is
 - (A) As (B) Pb (C) Hg (D) Silica
- Q.47 The main fan operating point of a ventilation system is shown in the figure below. If an NPV of 200 Pa assists the ventilation system, the resultant pressure (Pa) and quantity (m²) generated by the fan respectively are

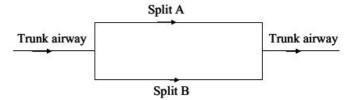
(A) 500,68	(8) 600,63	(C) 640,55	(D) 400,63
	(0) 000,00	(~) ~ ~ ~ ~	(

Statement for Linked Answer Questions 54 and 55:

Air at a density of 1.2 kg/m^3 flows in a straight duct such that the velocity at the centre is 12.5 m/s. The method factor for the velocity profile is known to be 0.80.

Q.54	4 The velocity pressure value in the duct in Pa is			
	(A) 31	(B) 47	(C) 60	(D) 83

Q.55 The air flow encounters a symmetric expansion such that the cross-sectional area of the duct becomes double. The static pressure value at the inlet and outlet of the expansion are 60 Pa and 90 Pa, respectively. Neglecting friction, the shock pressure loss on account of expansion in Pa is


2011

- Q.13 A centrifugal fan rotating at 500 rpm delivers 70 m³/s of air. If the speed is reduced to 200 rpm, the quantity of air delivered in m³/s will be
 - (A) 175 (B) 55 (C) 28 (D) 11

- Q.17 Mean air temperature of a 450 m deep downcast shaft is 29 °C and that of the upcast shaft is 37 °C. The height of the motive column in m is
 - (A) 8.2 (B) 9.5 (C) 11.6 (D) 12.8
- Q.18 The total pressure and the static pressure measured at a point in a ventilation duct are 20 mm and 10 mm of water gauge respectively. If density of air is 1.2 kg/m³, the velocity of the air in m/s is
 - (A) 14.08 (B) 12.78 (C) 8.53 (D) 6.24
- Q.21 Air samples collected from the intake and the return gates of a retreating longwall face show methane concentration values of 0.1 % and 0.8 % respectively. The production from the longwall face is 2000 tonne/day and the air quantity circulating the face is 15 m³/s. The rate of methane emission in m³ per tonne of coal produced is
 - (A) 11.0 (B) 9.5 (C) 5.5 (D) 4.5
- Q.38 A toxic gas flows into a mine working place at the rate of 2.52 m³/min. The concentration of the gas in the intake air is 0.25%. The minimum quantity of intake air in m³/min required to dilute the gas to its threshold limit value of 1.0 % is
 - (A) 123 (B) 252 (C) 295 (D) 333
- Q.39 An exhaust fan attached to an evasee of 18 m² cross-sectional area at the outlet circulates 150 m³/s of air at the pressure of 1000 Pa in a mine ventilation system. The ratio of the inlet to outlet area of the evasee is 1:4 and the density of air is 1.2 kg/m³. The quantity of air circulated in the mine in absence of evasee is 120 m³/s. The evasee efficiency in % is
 - (A) 57.6 (B) 43.2 (C) 39.06 (D) 37.7
- Q.40 A fan circulates 24 m³/s of air at a pressure of 1200 Pa in a ventilation district. It is intended to reduce the air quantity to 16 m³/s by placing a regulator. Assuming the pressure remains unchanged, the size of the regulator in m² is
 - (A) 1.48 (B) 0.74 (C) 0.37 (D) 0.18

Common Data for Questions 50 and 51:

A mine ventilation system consists of two splits A and B with resistances of 0.8 Ns²m⁻⁸ and 3.2 Ns²m⁻⁸, respectively as shown in figure. Trunk airways have resistance of 0.2 Ns²m⁻⁸. The main mine fan is generating pressure of 500 Pa.

- Q.50 The air quantities in m³/s circulated in the splits A and B respectively are
 - (A) 20 and 30 (B) 30 and 20 (C) 20 and 10 (D) 40 and 10
- Q.51 The flows in the two splits are equalized by placing a booster fan in split B. Assume that the fan pressure does not change after installation of the booster fan. The size of the booster fan in Pa is
 - (A) 749.05 (B) 850.08 (C) 950.02 (D) 1000.50

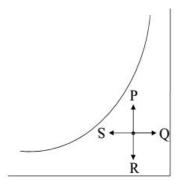
2012

- Q.42 In a longwall panel, the main gate road is 1000 m long, 4.5 m wide and 2 m high. The gate road is to be used for airflow at the rate of 17 m³/s. Considering a coefficient of resistance of airways of 0.01, the pressure in Pa required to maintain the airflow in the gate road is
 - (A) 51.83 (B) 463.84 (C) 875.98 (D) 7885.32

Statement for Linked Answer Questions 54 and 55:

In a mine between upcast shaft and downcast shaft, two airways are connected in parallel and their resistances are 100 and 120 N s⁻² m⁻⁸ respectively. The resistance of upcast shaft, downcast shaft and the fan drifts are 10, 20 and 5 N s⁻² m⁻⁸ respectively. The fan drift air pressure is 15 MN/m².

- Q.54 The rate of airflow through the mine in m^3/s is (A) 4.16 (B) 18.26 (C) 240.35 (D) 333.33
- Q.55 The rate of airflow through the split airway having resistance of 100 N s⁻² m⁻⁸ in m³/s is
 - (A) 0.42 (B) 0.79 (C) 2.19 (D) 7.90


2013

- Q.1 In the Coward flammability diagram, the respective percentages of methane and oxygen at the nose limit are
 - (A) 14.2, 0.0 (B) 14.1, 18.2 (C) 5.8, 12.1 (D) 5.0, 19.2

Q.9 Incubation period is NOT related to

(A) crossing point temperature of coal

- (B) panel size
- (C) seam thickness
- (D) explosibility of coal dust
- Q.41 Four psychrometric processes P, Q, R and S are shown in the psychrometric chart below.

These processes respectively represent

(A) dehumidification, humidification, sensible heating, sensible cooling

(B) sensible heating, humidification, dehumidification, sensible cooling

(C) dehumidification, sensible heating, sensible cooling, humidification

(D) humidification, sensible heating, dehumidification, sensible cooling Common Data for Questions 48 and 49:

Pressure characteristic of a mine fan is given by, $P = -0.06Q^2 + 400$, where P is the pressure in Pa and Q the quantity in m³/s. The resistance of the mine is 0.19 Ns²/m⁸.

- Q.48 The mine quantity in m^3/s is
 - (A) 160.0 (B) 53.5 (C) 45.9 (D) 40.0
- Q.49 An identical fan is installed in the mine to operate in series with the existing fan. The new mine quantity in m³/s is

(A) 75.6 (B) 56.7 (C) 50.8 (D) 30.2

- Q.17 For Indian coal mines, the 'maximum allowable concentration' of respirable dust containing 7.5% free silica in mg/m³ is
 - (A) 2.0 (B) 2.2 (C) 2.5 (D) 2.7

Q.24 An underground coal mine panel produces 520 tonnes per day deploying 220, 200 and 192 persons in three shifts. As per CMR 1957, the minimum quantity of air in m³/min to be delivered at the last ventilation connection of the panel is ______

10.

Instrument	Measuring parameter
P. Haldane apparatus	I. Humidity
Q. Godbert-Greenwald apparatus	II. Air velocity
R. Hygrometer	III. Mine air composition
S. Anemometer	IV. Ignition point temperature
(A) P-II, Q-I, R-III, S-IV	(B) P-III, Q-IV, R-I, S-II
(C) P-IV, Q-II, R-III, S-I	(D) P-I, Q-III, R-IV, S-II

- Q.45 A mine airway having cross-section of 2.2 m × 2.2 m and length 500 m contains a bend. Given that the airway friction factor is 0.01 Ns²m⁻⁴, shock loss factor for the bend is 0.07 and density of air is 1.2 kg/m³, the equivalent length of the airway in m is _____
- Q.46 In order to estimate the NVP in a mine, measurements are made at the main fan as shown below.

Fan s	speed (RPM)	Fan drift pressure (Pa)	Fan quantity (m3/s)
	800	655	82.2
	950	730	85.5

17 The register as of two colits A and P are 0.25 Ne^2m^2

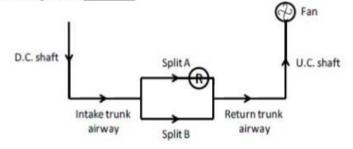
Q.44

- Q.47 The resistances of two splits A and B are 0.35 Ns²m⁻⁸ and 0.05 Ns²m⁻⁸ respectively. The combined resistance of the shafts and trunk airways is 0.4 Ns²m⁻⁸. A booster fan is planned to be installed in split A to increase the quantity flowing through it. Assuming that the surface fan continues to operate at a constant pressure of 1000 Pa, the critical pressure of the booster fan in Pa is _____
- Q.48 A pitot tube is inserted in a ventilation duct with the nose facing the air flow. A vertical U-tube manometer filled with alcohol (specific gravity 0.8) has been used for pressure measurements such that 10.2 mm is read as the total pressure and 8.8 mm as the static pressure. Given the density of air to be 1.2 kg/m³, the air velocity at the nose of the pitot tube in m/s is

Question Number : 30 Question Type : NAT

A gas mixture contains CH_4 , C_2H_6 and H_2 with respective concentrations of 75%, 15% and 10% by volume. The lower explosibility limit of CH_4 , C_2H_6 and H_2 are 5.0%, 3.3% and 4.2% respectively. The lower explosibility limit of the gas mixture, in percentage, is _____

Correct Answer: 4.2 to 5.0


Question Number : 31 Question Type : NAT

Intake air containing 0.2% methane enters a section of an underground mine where emission rate of methane is 0.05 m^3 /s. Assuming that the threshold limit value of methane is 1.25%, the minimum quantity of fresh air required in m^3 /s is _____

Correct Answer : 4.6 to 4.9

Question Number : 44 Question Type : NAT

For the ventilation system shown, the combined resistance of the trunk airways and the shafts is $2.2 \text{ Ns}^2\text{m}^{-8}$. The resistances of splits A and B are $0.5 \text{ Ns}^2\text{m}^{-8}$ and $0.8 \text{ Ns}^2\text{m}^{-8}$ respectively. A regulator of size 2.0 m^2 is placed in split A. Considering the fan generates a pressure of 1000 Pa, the air flow in m^3/s in split B is _____

Correct Answer : 10.2 to 10.8

10.2 10 10.0

Question Number : 45 Question Type : NAT

A mine fan running at 300 rpm delivers 150 m³/s of air at a pressure of 900 Pa. Fan and motor efficiencies are 75% and 90% respectively. If the fan speed is reduced to 250 rpm, the saving in electric power input to the motor in kW is _____

Correct Answer : 82 to 86

Question Number : 50 Question Type : NAT

A mine air sample contains CH₄, CO, H₂, N₂ and O₂. The mine air analysis using Haldane apparatus gives the following results expressed in percentage of total sample volume.

Total contraction after combustion	: 10.0
CO2 formed after combustion	: 6.0
O2 consumed in combustion	: 9.5

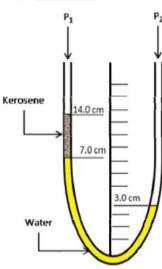
The percentage of CH₄ in the sample analysed is _____

Correct Answer: 3.8 to 4.2

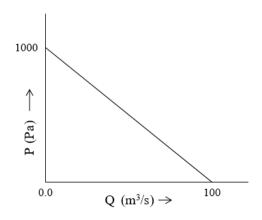
Question Number : 54 Question Type : NAT

Airborne PM_{10} concentration in a residential area is monitored for 24 hours by a respirable dust sampler. Initial and final weights of the filter paper are 2.3125 g and 2.6996 g respectively. The average airflow rate during sampling is 1.2 m³/min. The PM_{10} concentration of the area in $\mu g m^{-3}$ is _____

Correct Answer : 220 to 228


- Q.19 Underground coal mines are in principle ventilated by exhausting system, so that
 - (A) spontaneous heating risk is reduced
 - (B) fumes can be quickly removed in case of an underground fire
 - (C) build-up of methane concentration is decreased
 - (D) cool and fresh intake air can enter underground
- Q.18 At the inlet of a mine roadway, the dry and wet bulb temperatures of air are 38°C and 29°C, respectively. At the outlet, the corresponding temperatures are 32°C and 29°C, respectively. The process of heat transfer in the airway is described as
 - (A) evaporative cooling
 - (B) sensible cooling
 - (C) sensible heating
 - (D) dehumidification
 - Q.20 Identify the WRONG statement. Pit bottom air lock
 - (A) prevents the short circuiting of air when the flow is reversed in coal mines
 - (B) has at least three doors

(D) P-3, Q-2, R-1, S-4


- (C) has at least one door that has provision for latching
- (D) all doors are in principle designed to open towards high pressure side of the air
- Q.46 With reference to Coward diagram, match the following in the context of explosibility of a mixture of 'normal air' and 'methane'.

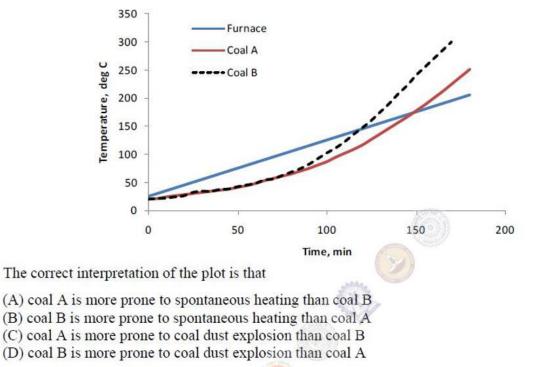
(O ₂ %, CH ₄ %)	Mixture status
P. 20.5, 2.4 Q. 19.0, 9.5 R. 17.0, 19.0 S. 20.0, 19.5	 Impossible mixture Non-explosive Potentially explosive Explosive
(A) P-2, Q-4, R-3, S-1 (B) P-2, Q-3, R-1, S-4 (C) P-2, Q-4, R-1, S-3	4. Explosive

Q.47 A U-tube manometer is subjected to differential pressure as shown. If specific gravity of kerosene is 0.8, the value of $(P_1 - P_2)$, in Pa, is_____.

- Q.48 An air stream having an enthalpy of 100 kJ/kgda, is flowing at 20 kgda/s. It is cooled by water at temperature $10^{\circ}C$ circulating in a cooling coil at a flow rate of 10.0 l/s. If the return temperature of water is $20^{\circ}C$, the enthalpy of the cooled air, in kJ/kgda, is ______. (Specific heat of water: 4.18 $kJ/kg^{\circ}C$; kgda: kg of dry air).
 - Q.49 The static pressure characteristic of a mine fan is as shown. If the mine resistance is $0.3 Ns^2/m^8$, the quantity generated by the fan, in m^3/s , is _____.

Q.50 In the context of ventilation plan symbols, match the following:

Symbol

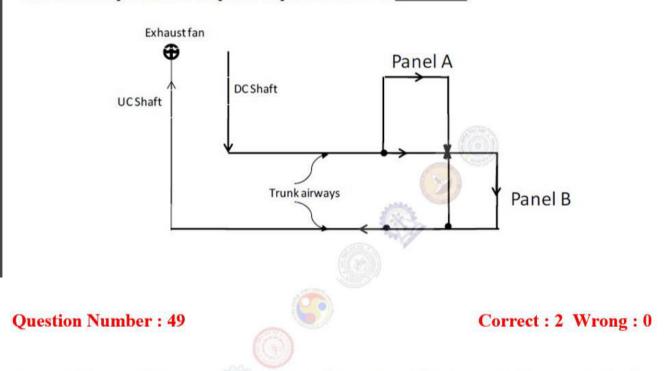

Description

P.		1. Temporary stopping
Q.	#	2. Regulator
R.	R	3. Air-crossing
S.		4. Ventilation stopping

(A) P-3, Q-4, R-2, S-1 (B) P-2, Q-3, R-1, S-4 (C) P-1, Q-3, R-4, S-2 (D) P-3, Q-2, R-1, S-4

Question Number : 21

Correct : 1 Wrong : -0.33



The results of the crossing point temperature experiments for coal A and B are shown in the figure.

Question Number : 48

Correct: 2 Wrong: 0

In a mine, 200 and 250 persons are deployed in the Panels A and B (shown in figure) respectively in the largest shift. The panels produce 400 and 500 tonne/day respectively. The resistances of panels A and B are $0.3 \text{ Ns}^2\text{m}^{-8}$ and $0.4 \text{ Ns}^2\text{m}^{-8}$ respectively and the combined resistance of shaft and trunk airways is $0.5 \text{ Ns}^2\text{m}^{-8}$. The operating static pressure of the fan in Pa to provide the minimum air quantities in the panels as per CMR 1957 is

In an auxiliary ventilation system, a fan is installed inside a 100 m long and 600 mm diameter duct to ventilate a blind heading face. The frictional coefficient of the duct is $0.0066 \text{ Ns}^2 \text{m}^{-4}$ and the static pressure characteristic of the fan is represented by:

 $P_s = 5Q^2 - 250Q + 1000$

where, P_s is in Pa and Q is in m³/s. The quantity of air delivered by the fan in m³/s is _____