Practice Test 2 for GATE Mining

1) A blast is carried out in a coal mine bench of height 12 m with burden and spacing 4.5 m and 9 m respectively. The drilling is carried out by a 250 mm diameter DTH drill with a sub-grade drilling of 2 m . Explosive used for this blast is ANFO with specific gravity of 0.8 . There are 40 numbers of holes blasted with a stemming height of 4 m . Find out the total quantity of explosives used for this blast in kg .
a) 15650
b) 15700
c) 15750
d) 15800
2) For a delay blasting of 10 circuits, a sequential timer is set on 25 ms between circuit initiations. If the nominal firing time of a detonator is 400 ms , the last hole will be blasted at ------- ms.
a) 650
b) 400
c) 625
d) 500
3) Find out the production (in tonne) from the given blast design. Number of holes $=30$ Burden $=3 \mathrm{~m}$, Spacing $=4 \mathrm{~m}$, Bench height $=10 \mathrm{~m}$, Charge column length $=8 \mathrm{~m}$, Stemming $=3 \mathrm{~m}$, Linear charge concentration $=18 \mathrm{~kg} / \mathrm{m}$, Unit weight of the blasted material $=2.5$ tonne $/ \mathrm{m} 3$
a) 9000
b) 9200
c) 8500
d) 8000
4) In a 4.2 m wide and 3.0 m high gallery in a coal seam, twelve shot holes are blasted per round. The holes are charged with 2 explosive cartridges of 435 g each. If the powder factor of the blast is 2.2 tonne $/ \mathrm{kg}$ and specific gravity of coal is 1.4 , the pull per round of blast in m is -----.
a) 1.30
b) 1.35
c) 1.32
d) 1.36
5) In a typical surface blast, the charge weight per delay was 100 kg and the vibration reading was taken at a distance 200 m behind the last row of the blastholes. Then, find out the square root scaling distance?
a) 20
b) 25
c) 30
d) 15
6) A blast vibration was monitored by using a seismograph and the Peak Particle Velocity (PPV) obtained at time ' t ' in respective longitudinal, transverse and vertical axis are as follows:

PPV	Transverse	Longitudinal	Vertical
mm / s	18.92	21.21	22.10

Find the Vector Sum (VS) at time ' t ' in mm / s.
a) 36
b) 35
c) 34
d) 37
7) Given the following information regarding a drilling application in a hard rock mine, select the correct drill jumbo required for a mobile, track mounted drill rig with a capacity of 1 to 4 drill booms:

Mining Method	Stope and Pillar Mining
Stope Face	Height $=6 \mathrm{~m}$ and Width $=7.2 \mathrm{~m}$
Drill power available	Pneumatic Percussion
Drill Bits	57 mm, Carbide
Rock	Denver Granite Gneiss
Penetration Rate	$11.9 \mathrm{~mm} / \mathrm{sec}$
Blasting Factor	$0.632 \mathrm{~m} 2 / \mathrm{hole}$
Depth of rounds or holes	$4.8 \mathrm{~m} \mathrm{(100} \mathrm{\%} \mathrm{pull} \mathrm{is} \mathrm{achieved)}$
Delay timing in drilling/ hole	2.40 minute

Drill rounds per day	3
Allowable drilling time/ round	4.0 hr
Tonnage Factor	$0.437 \mathrm{~m} 3 /$ tonne

The charge length per hole is 4 m , explosive used is ANFO with specific gravity 0.8 . Determine the tonnes of rock broken, drilling factor and powder factor.
8) A surface coal mine currently in operation plans to undertake additional blasting loading ANFO with a density of $0.8 \mathrm{~g} / \mathrm{cm} 3$. Additional relevant parameters with respect to this proposed shot are: Burden $=28$ feet, Spacing $=33$ feet, Bench height (or hole depth) $=$ 135 feet, Hole diameter = 11 inches, Stemming $=30$ feet, and No. of holes $=200$. In pounds of explosives per bank cubic yard of rock, what will the powder factor for a single one of these boreholes?
a) 0.25
b) 0.50
c) 0.75
d) 0.80
9) In a typical surface blast, the charge weight per delay was 100 kg and the vibration reading was taken at a distance 200 m behind the last row of the blastholes. Then, find out the square root scaling distance?
a) 20
b) 25
c) 15
d) 10
10) An emulsion explosive of specific gravity 1.25 is used for blasting in an iron ore formation having P-wave velocity of $3000 \mathrm{~m} / \mathrm{s}$ and specific gravity of 3.20 . For an explosive impedance to rock impedance ratio of 0.5 , the desired velocity of detonation of the explosive in m / s is -----
a) 3850
b) 3564
c) 3845
d) 3840

