TRAVERSE ANALYSIS

Traverses and Traversing

- Traverse
 - A fundamental survey operation.
 - A framework of lines measured bearings and distances.
- Property corners; fences; buildings; etc. are connected to traverses.
- Areas of land; cadastral boundaries; defined from traverse measurements.

Traverses and Traversing

- Closed traverses:
 - Start and finish at same point;
 - Have <u>linear</u> and <u>angular misclosures</u> that are indicators of traverse quality.
- Open traverses:
 - Start and finish at different points;
 - Have misclosures only if the terminal points are 'known'.
- This presentation is concerned with closed traverses.

Traverses and Traversing

- Traverse network
 - Several closed traverses.
 - Analysed using sophisticated least squares theory and computer software.
- This presentation is not about traverse networks or least squares.

Single Closed Traverse

Is this traverse OK ? Are angular and linear misclosures OK ?

Only <u>three</u> redundant measurements

- Bearing: $1 \rightarrow 4$
- Bearing: $4 \rightarrow 1$
- Distance: $1 \rightarrow 4$

Rule for assessing Quality

- Use Propagation of Variances to:
 - Estimate standard deviation of bearing of closing line;
 - Estimate standard deviation of distance of closing line.
- Reject traverse if misclosures are greater than twice estimated standard deviations.

Propagation of Variances

- A mathematical rule for estimating effects of random measurement errors
- Say $E = L \sin \theta$ and measurements Land θ have error variances s_{L}^{2} and s_{θ}^{2} and covariance $s_{L\theta}$ then $s_{E}^{2} = (\sin \theta) s_{L}^{2} + (L \cos \theta) s_{\theta}^{2}$ $+ 2(L \sin \theta \cos \theta) s_{L\theta}^{2}$
- Covariances = zero for independent measurements.

Propagation of Variances

- This rule conveniently expressed using matrix algebra.
- If $\mathbf{y} = f(\mathbf{x})$ then $\mathbf{Q}_{yy} = \mathbf{J}_{yx} \mathbf{Q}_{xx} \mathbf{J}_{yx}^{\mathsf{T}}$
 - **y** is a vector of computed quantities
 - **x** is a vector of measurements
 - $\mathbf{Q}_{yy} \mathbf{Q}_{xx}$ are variance matrices
 - \mathbf{J}_{yx} is a matrix of partial derivatives
- Very easy for computers.

Precision of traverse distances

- $s_d = \pm (A + B \times d / 1000)$
 - s_d is estimated standard deviation
 - *d* is traverse distance in metres
 - A is in mm
 - *B* in ppm (ppm = mm per km)
- Example:
 - $s_d = \pm (5 \text{ mm} + 3 \text{ ppm})$ if d = 1000 mthen $s_d = \pm 8.0 \text{ mm}$

Precision of traverse bearings

•
$$S^2_{For} = S^2_{Back} + S^2_{\beta}$$

- s²_{For} is variance of forward bearing
- s^2_{Back} is variance of back bearing
- s^2_{β} is variance of traverse angle

•
$$s_{\beta}^2 = s_{PR}^2 + s_{CENT}^2$$

- s²_{PR} is variance of pointing and reading to target (known)
- s²_{CENT} is variance of instrument and target centring errors (formula)

Precision of centring errors

Several candidates

average error due to imperfect centring $= r_c \frac{2}{\pi} \sqrt{\frac{1}{l_1^2} + \frac{1}{l_2^2} - \frac{2\cos\beta}{l_1l_2}}$ Briggs (1912) probable error due to imperfect centring $= p_c \sqrt{2\pi} \sqrt{\frac{1}{l_1^2} + \frac{1}{l_2^2} + \frac{\cos\beta}{2l_1l_2}}$ Miller (1936) standard deviation due to imperfect centring $= s_c \sqrt{2} \sqrt{\frac{1}{l_1^2} + \frac{1}{l_2^2} - \frac{\cos\beta}{l_1l_2}}$ Richardus (1966)

Briggs: calculus (instrument only) Miller: calculus Richardus: simplified propagation of variances

Monte Carlo angle simulation

- Calculate β_1 from A, B, C
- Move A, B, C small random amounts
- Calculate β_2 from A, B, C
 - Repeat process for the angles β_1 , β_2 , β_3 ,..., β_n
 - Determine standard deviation of set of angles

Precision of centring errors

A better formula from Monte Carlo simulation

standard deviation due to imperfect centring = $s_c \sqrt{\frac{1}{l_1^2} + \frac{1}{l_2^2} - \frac{\cos\beta}{l_1 l_2}}$

Deakin (2012)

Estimating traverse quality

Using the rules for precision of traverse bearings and distances, and propagation of variances, allows the estimation of precisions of the closing line of a traverse.

These can be compared with actual misclosures to assess the quality of a traverse.

These new rules are a modern approach to quality control. The END